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ANalysis Of VAriance

For a one-way layout. Your data look like this (in R):
Calorie Variety

175 Beef
173 Meat
144 Poultry
132 Beef

94 Poultry
149 Beef
179 Meat
180 Specialty
102 Poultry
135 Poultry
138 Meat

etc; where Calorie is a measurement, Variety is a factor (type
of hotdog in this case), and Beef, Meat etc are levels of the factor.



When you should use ‘classical’ ANOVA
H0 : µ1 = µ2 = · · · = µk

where µi is the population expectation for the ith level, AND

1. The underlying distributions of the measurements are Normal
(Gaussian) for each level, AND

2. The variances of these distributions are all the same, AND
3. The alternative hypothesis is

H1 : ∃i , j : µi 6= µj .

Otherwise, you will have to use something else.

I 1 or 2 don’t hold Example If (3) holds, Kruskal-Wallis test;
otherwise several two-sample Wilcoxon rank sum tests.

I 3 doesn’t hold. If (1) holds, several two-sample t-tests (with
unequal variances if (2) doesn’t hold); otherwise several
two-sample Wilcoxon rank sum tests.
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Several two-sample tests
Instead of

H0 : µ1 = µ2 = · · · = µk versus ∃i , j : µi 6= µj ,

which is just 1 test, do

H12
0 : µ1 = µ2 versus µ1 6= µ2

H13
0 : µ1 = µ3 versus µ1 6= µ3

...
H1k

0 : µ1 = µk versus µ1 6= µk

H23
0 : µ2 = µ3 versus µ2 6= µ3

...
Hk−1,k

0 : µk−1 = µk versus µk−1 6= µk

which is k(k − 1)/2 tests.

The hypotheses you reject are
interesting. How to control the error rate when multiple testing?
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Error rates: all done with p-values

I With a single hypothesis test, the Type 1 error α is the
probability of rejecting H0 when it is true.

If p ≤ α then H0 is rejected at a significance level of α.

I With multiple hypothesis tests, the Family-wise Error Rate
(FWER) is the probability of rejecting at least one H0 when it
is true.

If p∗
i ≤ α then H i

0 is rejected at a FWER of α.

I A transformation is applies to the individual p-values
p1, . . . , pm to derive p∗

1 , . . . , p∗
m. This is based on the Holm

procedure.

In practice: compute p1, . . . , pm; transform to p∗
1 , . . . , p∗

m; and
highlight those i for which p∗

i ≤ 0.05 (or some other conventional
significance level).
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Example: calories in hotdogs

Here are the measurements, by level (always draw this picture):



Example: calories in hotdogs (cont)
Suppose that we are interested in identifying interesting pairwise
differences. We say, “It is clear, from inspecting the measurements,
that Beef, Meat, and Specialty are similar, but Poultry is
different.” A boneheaded reviewer asks for p-values to back this up.

I Conditions (1) and (2) both appear to hold, so generate
m = 6 p-values using two-sample t-tests with equal variances.

I The original and transformed values can be displayed in a
square array, missing its diagonal:

Beef Meat Poult. Spec.
Beef 1.00000 0.00007 1.00000

Meat 0.81499 0.00015 1.00000
Poultry 0.00001 0.00003 0.00088

Specialty 0.69516 0.85961 0.00022

with the original p-values in the lower-left, and the
transformed ones in the top-right (pi ≤ p∗

i ).
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Example: calories in hotdogs (cont)
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Example: calories in hotdogs (cont)
Suppose that we are interested in identifying interesting pairwise
differences. We say, “It is clear, from inspecting the measurements,
that Beef, Meat, and Specialty are similar, but Poultry is
different.” A boneheaded reviewer asks for p-values to back this up.

I The original and transformed values can be displayed in a
square array, missing its diagonal:

Beef Meat Poult. Spec.
Beef 1.00000 0.00007 1.00000

Meat 0.81499 0.00015 1.00000
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with the original p-values in the lower-left, and the
transformed ones in the top-right (pi ≤ p∗

i ).
I We reject hypotheses H13

0 , H23
0 , and H34

0 at a FWER of 5%
(see Table for details).



Conservative procedures

I The Holm procedure will control the FWER with no
additional conditions, but it is conservative. Crudely, it can
raise p-values too much, leading to fewer rejections.

I Other procedures for controlling the FWER are less
conservative, but only valid under additional conditions.

I If you have a lot of levels (i.e. the number of pairwise
comparisons is large), then Holm and other procedures can be
very conservative.

I In this case (and possibly for other reasons) you may want to
switch to controlling the False Discovery Rate (FDR). This is
common in -omics.

A theoretical result states that FDR ≤ FWER, and so there
will typically be more rejections for the same threshold.
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Power: the elephant in the room
It is appropriate to end on a note of caution.

I For any statistical model, there are an uncountable number of
possible significance procedures, each one delivering a different
p-value. These occupy a spectrum

useless −→ powerful.

I A ‘naked’ p-value conveys nothing about where on this spectrum it
lies. To address this requires the calculation of power with respect
to an alternative hypothesis, similar to the Neyman-Pearson
approach to hypothesis testing.

I Fully parametic models, e.g. those that can be analysed using
classical ANOVA or two-sample t-tests, can be evaluated for power.
But non-parametric models evaluated by permutation tests, e.g. the
Wilcoxon rank sum test, cannot.

I If you think it is OK to ignore issues of power when producing
p-vaues, then you might like to reflect that much of the current
‘crisis of reproducibility’ in statistical science is due to ignorance and
under-powered tests. Don’t be part of the problem!



Power: the elephant in the room
It is appropriate to end on a note of caution.

I For any statistical model, there are an uncountable number of
possible significance procedures, each one delivering a different
p-value. These occupy a spectrum

useless −→ powerful.

I A ‘naked’ p-value conveys nothing about where on this spectrum it
lies. To address this requires the calculation of power with respect
to an alternative hypothesis, similar to the Neyman-Pearson
approach to hypothesis testing.

I Fully parametic models, e.g. those that can be analysed using
classical ANOVA or two-sample t-tests, can be evaluated for power.
But non-parametric models evaluated by permutation tests, e.g. the
Wilcoxon rank sum test, cannot.

I If you think it is OK to ignore issues of power when producing
p-vaues, then you might like to reflect that much of the current
‘crisis of reproducibility’ in statistical science is due to ignorance and
under-powered tests. Don’t be part of the problem!



Failure of the Normal conditions

Here’s one where the normal conditions appear to hold:

Back again



Failure of the Normal conditions

And here’s one where they don’t hold:

Back again
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